Curiosité, apprentissage et soutien scolaire
24/05/2022
InscriptionConnexion
Langue : FR | ENG

NEWSLETTER

:

Venez discuter sur le forum !
 Inscription RAPIDE et GRATUITE. 
😀 Accès aux forums de discussion 😀
SOUTIEN SCOLAIRE, aide en INFORMATIQUE, aide pour apprendre le FRANÇAIS et l'ANGLAIS, discussion sur vos centres d'INTÉRÊTS et LOISIRS...

Vous recherchez la version française de cette section ?

Cette section est en anglais parce que les contenus sont en anglais. Si vous préférez la version française de cette section, cliquez sur le lien ci-dessous.
Cependant, les contenus des sections française et anglaise ne sont pas nécessairement les mêmes!
Contenus sur les mathématiques en français


Some useful formulas
Cosine function

Some properties of the cosine function (cos) :

    \(\displaystyle cos(-x)=cos(x)\)

    \(\displaystyle cos(\pi+x)=-cos(x)\)

    \(\displaystyle cos(\pi-x)=-cos(x)\)

    \(\displaystyle cos(\frac{\pi}{2}+x)=-sin(x)\)

    \(\displaystyle cos(\frac{\pi}{2}-x)=sin(x)\)

    \(\displaystyle cos(x+y)=cos(x)*cos(y)−sin(x)*sin(y)\)

    \(\displaystyle cos(x-y)=cos(x)*cos(y)+sin(x)*sin(y)\)

    \(\displaystyle \begin{aligned}cos(2x)&=cos^2(x)-sin^2(x) \\
    &=1-2*sin^2(x) \\
    &=2*cos^2(x)-1\end{aligned}\)

    \(\displaystyle \begin{aligned}cos(3x)&=cos(x)*\left(1-4*sin^2(x)\right) \\
    &=cos(x)*\left(4*cos^2(x)-3\right)\end{aligned}\)

    \(\displaystyle cos^2(\frac{x}{2})=\frac{1+cos(x)}{2}\)

    \(\displaystyle cos(x)+cos(y)=2*cos\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)-cos(y)=-2*sin\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)*cos(y)=\frac{1}{2}\left(cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle cos(x)*sin(y)=\frac{1}{2}\left(sin(x+y)-sin(x-y)\right)\)


Sine function

Some properties of the sine function (sin) :

    \(\displaystyle sin(-x)=-sin(x)\)

    \(\displaystyle sin(\pi+x)=-sin(x)\)

    \(\displaystyle sin(\pi-x)=sin(x)\)

    \(\displaystyle sin(\frac{\pi}{2}+x)=cos(x)\)

    \(\displaystyle sin(\frac{\pi}{2}-x)=cos(x)\)

    \(\displaystyle sin(x+y)=sin(x)*cos(y)+cos(x)*sin(y)\)

    \(\displaystyle sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)\)

    \(\displaystyle sin(2x)=2*sin(x)*cos(x)\)

    \(\displaystyle \begin{aligned}sin(3x)&=sin(x)\left(4*cos^2(x)-1\right) \\
    &=sin(x)*\left(3-4*sin^2(x)\right)\end{aligned}\)

    \(\displaystyle sin^2(\frac{x}{2})=\frac{1-cos(x)}{2}\)

    \(\displaystyle sin(x)+sin(y)=2*sin\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)-sin(y)=2*cos\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)*sin(y)=\frac{1}{2}\left(-cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle sin(x)*cos(y)=\frac{1}{2}\left(sin(x+y)+sin(x-y)\right)\)


Tangent function

Some properties of the tangent function (tan) :

    \(\displaystyle tan(-x)=-tan(x)\)

    \(\displaystyle tan(\pi+x)=tan(x)\)

    \(\displaystyle tan(\pi-x)=-tan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}+x)=-cotan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}-x)=cotan(x)\)

    \(\displaystyle tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)*tan(y)}\)

    \(\displaystyle tan(x-y)=\frac{tan(x)-tan(y)}{1+tan(x)*tan(y)}\)

    \(\displaystyle tan(2x)=\frac{2*tan(x)}{1-tan^2(x)}\)

    \(\displaystyle tan(3x)=\frac{tan(x)\left(3-tan^2(x)\right)}{1-3*tan^2(x)}\)

    \(\displaystyle tan^2(\frac{x}{2})=\frac{1-cos(x)}{1+cos(x)}\)

    \(\displaystyle \begin{aligned}tan(\frac{x}{2})&=\frac{1-cos(x)}{sin(x)} \\
    &=\frac{sin(x)}{1+cos(x)}\end{aligned}\)

    \(\displaystyle tan(x)+tan(y)=\frac{sin(x+y)}{cos(x)*cos(y)}\)

    \(\displaystyle tan(x)-tan(y)=\frac{sin(x-y)}{cos(x)*cos(y)}\)


If you have any comments or questions about the trigonometry formulas, you can discuss them in the forum: Discussion forums.

CHALLENGE : If you want to practice demonstrating any of these formulas, you can propose a proof in the forum: Discussion forums.

Des questions, des commentaires ?
Commentaires rapides
Il n'y a pas encore de commentaires.

Utilisation des cookies sur ce site web :
- Si vous n'êtes pas inscrit à ce site, aucun cookie n'est stocké intentionnellement sur votre ordinateur.
- Si vous êtes inscrit à ce site, les cookies sont utilisés uniquement pour conserver votre connexion après chaque visite. Cette option est désactivable à volonté dans votre profil et est désactivée par défaut.
- Aucune autre information n'est stockée ou récupérée à votre insu, ni vos informations personnelles ni aucune autre quelle qu'elle soit. En cas de doute, n'hésitez pas à contacter l'administrateur de ce site .
- Même ce bandeau d'information n'utilise pas de cookies et donc sera affiché constamment à chaque visite sur toutes les pages du site.