 Curiosity, learning and homework help

:

### MEMBERS

 Come to discuss on the forum!■ FAST and FREE signup. ■ 😀 Access to discussion forums 😀 Help for HOMEWORKS, support in COMPUTER SCIENCE, help for learning FRENCH and ENGLISH, discussion on your INTERESTS and HOBBIES...

Some useful formulas
Cosine function

Some properties of the cosine function (cos) :

$$\displaystyle cos(-x)=cos(x)$$

$$\displaystyle cos(\pi+x)=-cos(x)$$

$$\displaystyle cos(\pi-x)=-cos(x)$$

$$\displaystyle cos(\frac{\pi}{2}+x)=-sin(x)$$

$$\displaystyle cos(\frac{\pi}{2}-x)=sin(x)$$

$$\displaystyle cos(x+y)=cos(x)*cos(y)−sin(x)*sin(y)$$

$$\displaystyle cos(x-y)=cos(x)*cos(y)+sin(x)*sin(y)$$

\displaystyle \begin{aligned}cos(2x)&=cos^2(x)-sin^2(x) \\ &=1-2*sin^2(x) \\ &=2*cos^2(x)-1\end{aligned}

\displaystyle \begin{aligned}cos(3x)&=cos(x)*\left(1-4*sin^2(x)\right) \\ &=cos(x)*\left(4*cos^2(x)-3\right)\end{aligned}

$$\displaystyle cos^2(\frac{x}{2})=\frac{1+cos(x)}{2}$$

$$\displaystyle cos(x)+cos(y)=2*cos\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)$$

$$\displaystyle cos(x)-cos(y)=-2*sin\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)$$

$$\displaystyle cos(x)*cos(y)=\frac{1}{2}\left(cos(x+y)+cos(x-y)\right)$$

$$\displaystyle cos(x)*sin(y)=\frac{1}{2}\left(sin(x+y)-sin(x-y)\right)$$

Sine function

Some properties of the sine function (sin) :

$$\displaystyle sin(-x)=-sin(x)$$

$$\displaystyle sin(\pi+x)=-sin(x)$$

$$\displaystyle sin(\pi-x)=sin(x)$$

$$\displaystyle sin(\frac{\pi}{2}+x)=cos(x)$$

$$\displaystyle sin(\frac{\pi}{2}-x)=cos(x)$$

$$\displaystyle sin(x+y)=sin(x)*cos(y)+cos(x)*sin(y)$$

$$\displaystyle sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)$$

$$\displaystyle sin(2x)=2*sin(x)*cos(x)$$

\displaystyle \begin{aligned}sin(3x)&=sin(x)\left(4*cos^2(x)-1\right) \\ &=sin(x)*\left(3-4*sin^2(x)\right)\end{aligned}

$$\displaystyle sin^2(\frac{x}{2})=\frac{1-cos(x)}{2}$$

$$\displaystyle sin(x)+sin(y)=2*sin\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)$$

$$\displaystyle sin(x)-sin(y)=2*cos\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)$$

$$\displaystyle sin(x)*sin(y)=\frac{1}{2}\left(-cos(x+y)+cos(x-y)\right)$$

$$\displaystyle sin(x)*cos(y)=\frac{1}{2}\left(sin(x+y)+sin(x-y)\right)$$

Tangent function

Some properties of the tangent function (tan) :

$$\displaystyle tan(-x)=-tan(x)$$

$$\displaystyle tan(\pi+x)=tan(x)$$

$$\displaystyle tan(\pi-x)=-tan(x)$$

$$\displaystyle tan(\frac{\pi}{2}+x)=-cotan(x)$$

$$\displaystyle tan(\frac{\pi}{2}-x)=cotan(x)$$

$$\displaystyle tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)*tan(y)}$$

$$\displaystyle tan(x-y)=\frac{tan(x)-tan(y)}{1+tan(x)*tan(y)}$$

$$\displaystyle tan(2x)=\frac{2*tan(x)}{1-tan^2(x)}$$

$$\displaystyle tan(3x)=\frac{tan(x)\left(3-tan^2(x)\right)}{1-3*tan^2(x)}$$

$$\displaystyle tan^2(\frac{x}{2})=\frac{1-cos(x)}{1+cos(x)}$$

\displaystyle \begin{aligned}tan(\frac{x}{2})&=\frac{1-cos(x)}{sin(x)} \\ &=\frac{sin(x)}{1+cos(x)}\end{aligned}

$$\displaystyle tan(x)+tan(y)=\frac{sin(x+y)}{cos(x)*cos(y)}$$

$$\displaystyle tan(x)-tan(y)=\frac{sin(x-y)}{cos(x)*cos(y)}$$

If you have any comments or questions about the trigonometry formulas, you can discuss them in the forum: Discussion forums.

CHALLENGE : If you want to practice demonstrating any of these formulas, you can propose a proof in the forum: Discussion forums.