Curiosity, learning and homework help
Sign upLog in
Language: FR | ENG




Come to discuss on the forum!
 FAST and FREE signup. 
😀 Access to discussion forums 😀
Help for HOMEWORKS, support in COMPUTER SCIENCE, help for learning FRENCH and ENGLISH, discussion on your INTERESTS and HOBBIES...

Following numerous requests, a new forum on PIPENET Vision has been created!

Looking for an English version of this section?

This section is in French because the contents are in French. If you prefer the English version of this section, click on the link below.
However, the contents in the French and the English sections are not necessarily the same!
Contents for mathematics in English

Quelques formules utiles
Fonction cosinus

Quelques propriétés de la fonction cosinus (cos) :

    \(\displaystyle cos(-x)=cos(x)\)

    \(\displaystyle cos(\pi+x)=-cos(x)\)

    \(\displaystyle cos(\pi-x)=-cos(x)\)

    \(\displaystyle cos(\frac{\pi}{2}+x)=-sin(x)\)

    \(\displaystyle cos(\frac{\pi}{2}-x)=sin(x)\)

    \(\displaystyle cos(x+y)=cos(x)*cos(y)−sin(x)*sin(y)\)

    \(\displaystyle cos(x-y)=cos(x)*cos(y)+sin(x)*sin(y)\)

    \(\displaystyle \begin{aligned}cos(2x)&=cos^2(x)-sin^2(x) \\
    &=1-2*sin^2(x) \\

    \(\displaystyle \begin{aligned}cos(3x)&=cos(x)*\left(1-4*sin^2(x)\right) \\

    \(\displaystyle cos^2(\frac{x}{2})=\frac{1+cos(x)}{2}\)

    \(\displaystyle cos(x)+cos(y)=2*cos\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)-cos(y)=-2*sin\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle cos(x)*cos(y)=\frac{1}{2}\left(cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle cos(x)*sin(y)=\frac{1}{2}\left(sin(x+y)-sin(x-y)\right)\)

Fonction sinus

Quelques propriétés de la fonction sinus (sin) :

    \(\displaystyle sin(-x)=-sin(x)\)

    \(\displaystyle sin(\pi+x)=-sin(x)\)

    \(\displaystyle sin(\pi-x)=sin(x)\)

    \(\displaystyle sin(\frac{\pi}{2}+x)=cos(x)\)

    \(\displaystyle sin(\frac{\pi}{2}-x)=cos(x)\)

    \(\displaystyle sin(x+y)=sin(x)*cos(y)+cos(x)*sin(y)\)

    \(\displaystyle sin(x-y)=sin(x)*cos(y)-cos(x)*sin(y)\)

    \(\displaystyle sin(2x)=2*sin(x)*cos(x)\)

    \(\displaystyle \begin{aligned}sin(3x)&=sin(x)\left(4*cos^2(x)-1\right) \\

    \(\displaystyle sin^2(\frac{x}{2})=\frac{1-cos(x)}{2}\)

    \(\displaystyle sin(x)+sin(y)=2*sin\left(\frac{x+y}{2}\right)*cos\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)-sin(y)=2*cos\left(\frac{x+y}{2}\right)*sin\left(\frac{x-y}{2}\right)\)

    \(\displaystyle sin(x)*sin(y)=\frac{1}{2}\left(-cos(x+y)+cos(x-y)\right)\)

    \(\displaystyle sin(x)*cos(y)=\frac{1}{2}\left(sin(x+y)+sin(x-y)\right)\)

Fonction tangente

Quelques propriétés de la fonction tangente (tan) :

    \(\displaystyle tan(-x)=-tan(x)\)

    \(\displaystyle tan(\pi+x)=tan(x)\)

    \(\displaystyle tan(\pi-x)=-tan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}+x)=-cotan(x)\)

    \(\displaystyle tan(\frac{\pi}{2}-x)=cotan(x)\)

    \(\displaystyle tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)*tan(y)}\)

    \(\displaystyle tan(x-y)=\frac{tan(x)-tan(y)}{1+tan(x)*tan(y)}\)

    \(\displaystyle tan(2x)=\frac{2*tan(x)}{1-tan^2(x)}\)

    \(\displaystyle tan(3x)=\frac{tan(x)\left(3-tan^2(x)\right)}{1-3*tan^2(x)}\)

    \(\displaystyle tan^2(\frac{x}{2})=\frac{1-cos(x)}{1+cos(x)}\)

    \(\displaystyle \begin{aligned}tan(\frac{x}{2})&=\frac{1-cos(x)}{sin(x)} \\

    \(\displaystyle tan(x)+tan(y)=\frac{sin(x+y)}{cos(x)*cos(y)}\)

    \(\displaystyle tan(x)-tan(y)=\frac{sin(x-y)}{cos(x)*cos(y)}\)

Si vous avez des commentaires ou des questions sur les formules de trigonométrie, vous pouvez venir en discuter sur le forum : Forums de discussion.

DÉFI : Si vous voulez vous entrainer à démontrer n'importe lesquelles de ces formules, vous pouvez venir proposer une démonstration sur le forum : Forums de discussion.
Share this page on social media:
Quick comments
There is no comment yet.

Use of cookies on this website:
- If you are not a member of this website, no cookie is intentionally stored on your computer.
- If you are a member of this website, cookies are only used to keep your connection after each visit. This option can be deactivated at will in your profile and is deactivated by default.
- No other information is stored or retrieved without your knowledge, neither your personal information nor any other whatsoever. If in doubt, do not hesitate to contact the administrator of this website .
- Even this information banner does not use cookies and will therefore be displayed constantly on each visit on all pages of the website.